Publications

Journal Publications

June 4, 2012
R. Bista, S. Uttam, D. Hartman, W. Qiu, L. Zhang, R. Brand, and Y. Liu
Abstract

The development of accurate and clinically applicable tools to assess cancer risk is essential to define candidates to undergo screening for early-stage cancers at a curable stage or provide a novel method to monitor chemoprevention treatments. With the use of our recently developed optical technology—spatial-domain low-coherence quantitative phase microscopy (SL-QPM), we have derived a novel optical biomarker characterized by structure-derived optical path length (OPL) properties from the cell nucleus on the standard histology and cytology specimens, which quantifies the nano-structural alterations within the cell nucleus at the nanoscale sensitivity, referred to as nano-morphology marker. The aim of this study is to evaluate the feasibility of the nuclear nano-morphology marker from histologically normal cells, extracted directly from the standard histology specimens, to detect early-stage carcinogenesis, assess cancer risk, and monitor the effect of chemopreventive treatment. We used a well-established mouse model of spontaneous carcinogenesis—ApcMin mice, which develop multiple intestinal adenomas (Min) due to a germline mutation in the adenomatous polyposis coli (Apc) gene. We found that the nuclear nano-morphology marker quantified by OPL detects the development of carcinogenesis from histologically normal intestinal epithelial cells, even at an early pre-adenomatous stage (six weeks). It also exhibits a good temporal correlation with the small intestine that parallels the development of carcinogenesis and cancer risk. To further assess its ability to monitor the efficacy of chemopreventive agents, we used an established chemopreventive agent, sulindac. The nuclear nano-morphology marker is reversed toward normal after a prolonged treatment. Therefore, our proof-of-concept study establishes the feasibility of the SL-QPM derived nuclear nano-morphology marker OPL as a promising, simple and clinically applicable biomarker for cancer risk assessment and evaluation of chemopreventive treatment.

April 5, 2012
S. Alexandrov, S. Uttam, R. Bista, R Zhao, and Y. Liu
Abstract

We demonstrate a novel approach for the real time visualization and quantification of the 3D spatial frequencies in an image domain. Our approach is based on the spectral encoding of spatial frequency principle and permits the formation of an image as a color map in which spatially separated spectral wavelengths correspond to the dominant 3D spatial frequencies of the object. We demonstrate that our approach can visualize and analyze the dominant axial internal structure for each image point in real time and with nanoscale sensitivity to structural changes. Computer modeling and experimental results of instantaneous color visualization and quantification of 3D structures of a model system and biological samples are presented.

November 1, 2011
S. Uttam, R. Bista, D. Hartman, R. Brand, and Y. Liu
Abstract

For any technique to be adopted into a clinical setting, it is imperative that it seamlessly integrates with well-established clinical diagnostic workflow. We recently developed an optical microscopy technique-spatial-domain low-coherence quantitative phase microscopy (SL-QPM) that can extract the refractive index of the cell nucleus from the standard histology specimens on glass slides prepared via standard clinical protocols. This technique has shown great potential in detecting cancer with a better sensitivity than conventional pathology. A major hurdle in the clinical translation of this technique is the intrinsic variation among staining agents used in histology specimens, which limits the accuracy of refractive index measurements of clinical samples. In this paper, we present a simple and easily generalizable method to remove the effect of variations in staining levels on nuclear refractive index obtained with SL-QPM. We illustrate the efficacy of our correction method by applying it to variously stained histology samples from animal model and clinical specimens.

August 22, 2011
IEEE Trans Image Process; 21(2): 638-652 (2012).
Feature-specific difference imaging
S. Uttam, N. Goodman, and M. Neifeld
Abstract

Difference images quantify changes in the object scene over time. In this paper, we use the feature-specific imaging paradigm to present methods for estimating a sequence of difference images from a sequence of compressive measurements of the object scene. Our goal is twofold. First is to design, where possible, the optimal sensing matrix for taking compressive measurements. In scenarios where such sensing matrices are not tractable, we consider plausible candidate sensing matrices that either use the available a priori information or are nonadaptive. Second, we develop closed-form and iterative techniques for estimating the difference images. We specifically look at l 2 - and l 1 -based methods. We show that l 2 -based techniques can directly estimate the difference image from the measurements without first reconstructing the object scene. This direct estimation exploits the spatial and temporal correlations between the object scene at two consecutive time instants. We further develop a method to estimate a generalized difference image from multiple measurements and use it to estimate the sequence of difference images. For l 1 -based estimation, we consider modified forms of the total-variation method and basis pursuit denoising. We also look at a third method that directly exploits the sparsity of the difference image. We present results to show the efficacy of these techniques and discuss the advantages of each

August 19, 2011
Opt. Lett.; 36: 3323-3325 (2011).
Spectral contrast imaging microscopy
S. Alexandrov, S. Uttam, R. Bista, and Y. Liu
Abstract

We introduce a new technique, spectral contrast imaging microscopy (SCIM), for super-resolution microscopic imaging. Based on a novel contrast mechanism that encodes each local spatial frequency with a corresponding optical wavelength, SCIM provides a real-time high-resolution spectral contrast microscopic image with superior contrast. We show that two microscopic objects, separated by a distance smaller than the diffraction limit of the optical system, can be spatially resolved in the SCIM image as different colors. Results with numerical simulation and experiments using a high-resolution United States Air Force target are presented. The ability of SCIM for imaging biological cells is also demonstrated.

Conference Presentations

S. Uttam
Nanoscale nuclear architecture mapping of early carcinogenesis
Paper 12389-32, Quantitative Phase Imaging IX, SPIE Photonics West, San Francisco (January 27 - Feb 1, 2023) [Invited]
February 1, 2023
S. Uttam
Label-free nanoscale nuclear architecture mapping of early carcinogenesis
2023 Biophysics and Quantitative Biology in the AI Era, NSF AI Planning Institute at Carnegie Mellon University (Jan 12-13, 2023)
January 25, 2023
S. Uttam
Overcoming the segmentation barrier in in multiplexed spatial proteomic images
UPMC Hillman Cancer Center, Spatial Omics and Computational Imaging in Human Diseases Symposium, Nov 14, 2022. [Invited]
December 1, 2022
S. Uttam
Cancer systems biology in space and scale
UPMC Hillman Cancer Center, Cancer Biology Program Retreat, Oct 24, 2022 [Invited]
November 20, 2022
K. Yadav, R. Pawar, A. Singhi, and S. Uttam
Characterizing the Three-Dimensional Nuclear Morphology of Normal Appearing, Immune, and Cancer Cells in Cancer Tumor Microenvironment
2022 Biomedical Engineering Society (BMES) Annual Meeting, Oct 12-15, 2022
October 1, 2022
C. Newman, B. Kochetov, R. Raphael, L. Zhang, and S. Uttam
Understanding the Cellular Landscape of Preclinical Models of Colorectal Cancer
2022 Biomedical Engineering Society (BMES) Annual Meeting, Oct 12-15, 2022
October 1, 2022

Conference Presentations

S. Uttam
Nanoscale nuclear architecture mapping of early carcinogenesis
Paper 12389-32, Quantitative Phase Imaging IX, SPIE Photonics West, San Francisco (January 27 - Feb 1, 2023) [Invited]
February 1, 2023
S. Uttam
Label-free nanoscale nuclear architecture mapping of early carcinogenesis
2023 Biophysics and Quantitative Biology in the AI Era, NSF AI Planning Institute at Carnegie Mellon University (Jan 12-13, 2023)
January 25, 2023
S. Uttam
Overcoming the segmentation barrier in in multiplexed spatial proteomic images
UPMC Hillman Cancer Center, Spatial Omics and Computational Imaging in Human Diseases Symposium, Nov 14, 2022. [Invited]
December 1, 2022
S. Uttam
Cancer systems biology in space and scale
UPMC Hillman Cancer Center, Cancer Biology Program Retreat, Oct 24, 2022 [Invited]
November 20, 2022
K. Yadav, R. Pawar, A. Singhi, and S. Uttam
Characterizing the Three-Dimensional Nuclear Morphology of Normal Appearing, Immune, and Cancer Cells in Cancer Tumor Microenvironment
2022 Biomedical Engineering Society (BMES) Annual Meeting, Oct 12-15, 2022
October 1, 2022
C. Newman, B. Kochetov, R. Raphael, L. Zhang, and S. Uttam
Understanding the Cellular Landscape of Preclinical Models of Colorectal Cancer
2022 Biomedical Engineering Society (BMES) Annual Meeting, Oct 12-15, 2022
October 1, 2022
B. Raymond, D. J. Hartman, and S. Uttam
Spatial Analysis of Cytotoxic T Lymphocyte Infiltration in Colorectal Tumors for Predicting Stage-independent Relapse and Death
2022 Biomedical Engineering Society (BMES) Annual Meeting, Oct 12-15, 2022
October 1, 2022
P. N. Thota, J. Nasibli, P. Kumar, M.R. Sanaka, A. Chak, X. Zhang, X. Liu, S. Uttam, and Y. Liu
Nanoscale nuclear architecture mapping predicts neoplastic progression in Barrett’s esophagus: a proof-of-concept study
in Gastrointest. Endosc.; 95(6) Supplement, AB230-AB231
September 1, 2022
B. Kochetov, P.D. Bell, R. Raphael, B.J. Raymond, B.J. Leibowitz, J. Tong, B. Diergaarde , J. Yu, R.K. Pai, R.E. Schoen, L. Zhang, A. Singhi, and S. Uttam
Unsupervised sub-cellular segmentation of complex tissue and cell samples using highly multiplexed imaging-derived a priori knowledge
Abstract 1930. Cancer Res 15 June 2022; 82 (12_Supplement): 1930
June 1, 2022
D. Pitlor, R. E. Brand, B. Dudley, E. Karlowski, A. Zyhowski, E. J. Metter, R. M. Brand, and S. Uttam
Coefficient of variation based multiplexed ELISA biomarker selection in HNPCC Syndrome Patients
Biomedical Engineering Society (BMES) 2021 Annual Meeting; Oct 6 - 9, 2021; Orlando, Florida; Abstract reu-007-3147 (2021)
October 6, 2021
S. Leng, J. Xu, Y. Liu, and S. Uttam
Demonstration of ability of nanoscale nuclear architecture mapping to study chromatin alteration
Biomedical Engineering Society (BMES) 2021 Annual Meeting; Oct 6 - 9, 2021; Orlando, Florida; Abstract reu-011-3129 (2021).
October 6, 2021
B. Kochetov, R. Raphael, and S. Uttam
Unsupervised segmentation of complex tissue using multiplexed imaging-derived a priori knowledge
Biomedical Engineering Society (BMES) 2021 Annual Meeting; Oct 6 - 9, 2021; Orlando, Florida; Abstract 074 - 841 (2021)
October 6, 2021
S. Uttam
Sampling and scrambling in compressive sensing based spectral domain optical coherence tomography
CLEO Laser Science to Photonic Applications (Optical Society of America, 2020) JTu2F.7.
May 10, 2020
S. Uttam and Y. Liu
Three-dimensional nanoscale nuclear architecture mapping for improved cancer risk stratification
SPIE/OSA European Conferences on Biomedical Optics (ECBO) 2019, 23-27 June 2019, Munich, Germany; Paper 11076-38 (2019). [Invited paper]
June 23, 2019
S. Uttam, A.M. Stern, S. A. Furman, F. Pullara, F. Ginty, D. L. Taylor, S. C. Chennubhotla
Spatial proteomics with hyperplexed fluorescence imaging predicts risk of colorectal cancer recurrence and infers recurrence-specific protein-protein networks
Cancer Res; 79 (13 Supplement): 1642 (2019). [AACR Annual Meeting 2019, March 29-April 3 2019, Atlanta, Georgia.]
March 29, 2019
S. Uttam
Hyperplexed immunofluorescence imaging based on spatial proteomics predicts risk of colorectal cancer recurrence and infers recurrence-specific protein networks
Joint Immunology and Computational and Systems Biology Workshop, Jan 23, 2019, University of Pittsburgh, Pittsburgh, PA, USA (2019
January 23, 2019
R. C. Burgess and S. Uttam
Modeling the impact of chromatin modifications on the DNA damage response in yeast
Find Your Inner Modeler workshop, Aug 16-17, 2018, University of Illinois at Chicago, Chicago, Illinois, USA (2018). [Travel award]
August 16, 2018
F. Pullara, N. Bouhenni, S. Uttam, and S. C. Chennubhotla
Integrative strategies for probing energy landscapes and dynamics of IDPs
Workshop on Intrinsically Disordered Proteins, TSRC 2017, July 11--14, 2017; Telluride, Colorado, USA (2017)
July 11, 2017
S. Uttam, F. Pullara, and S. C. Chennubhotla
Comparative dynamics - An information theoretic perspective
Biomolecular Machines Conference - Protein Flexibility and Allostery, May 18-21, 2017, Banff, Alberta, Canada (2017)
May 17, 2017
S. Uttam
Nanoscale nuclear architecture mapping for cancer-risk stratification and prediction
Computational Pathology Lecture Series, April 14, 2017; Computational Pathology Interest Group and Lecture Series, University of Pittsburgh, Pittsburgh, Pennsylvania, USA (2017). [Invited talk]
April 17, 2017
Y. Liu, S. Uttam, H. V. Pham, and D. J. Hartman
Improved cancer risk stratification and diagnosis via quantitative phase microscopy
SPIE Photonics West (BIOS), Jan 28 -- Feb 2, 2017, San Francisco, USA; Conference: Quantitative Phase Imaging III, Paper 10074-40 (2017).[Invited paper]
February 2, 2017
R. Bista, S. Uttam, D. Hartman, W. Qiu, J. Yu, L. Zhang, R. Brand, and Y. Liu
Investigation of nuclear nano-morphology markers as a novel biomarker for cancer risk assessment using a mouse model
Gastroenterology - San Diego, 2012; 142(5):S-532.
May 1, 2012
S. Uttam, S. Alexandrov, R. Bista, and Y. Liu
Model-based demonstration of spectral tomographic imaging
in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BSu3A.61.
February 28, 2012
Y. Liu, S. Alexandrov, S. Uttam, and R. Bista
Probing Cell Nanoscale Structural Properties Using Intrinsic Contrast of Light Scattering
Biophysical Journal, Vol. 102, Issue 3, S1 (2012). [Invited talk ]
February 25, 2012
We're always looking to spark connections and create opportunities.
Connect, collaborate or just say hi.
Contact us